首页> 外文OA文献 >Reaching record-low $β^*$ at the CERN Large Hadron Collider using a novel scheme of collimator settings and optics
【2h】

Reaching record-low $β^*$ at the CERN Large Hadron Collider using a novel scheme of collimator settings and optics

机译:使用新型的准直仪设置和光学系统,在CERN大型强子对撞机上达到创纪录的$β^ * $

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Large Hadron Collider (LHC) at CERN is built to collide intense proton beams with an unprecedented energy of 7 TeV. The design stored energy per beam of 362 MJ makes the LHC beams highly destructive, so that any beam losses risk to cause quenches of superconducting magnets or damage to accelerator components. Collimators are installed to protect the machine and they define a minimum normalized aperture, below which no other element is allowed. This imposes a limit on the achievable luminosity, since when squeezing β* (the β -function at the collision point) to smaller values for increased luminosity, the β -function in the final focusing system increases. This leads to a smaller normalized aperture that risks to go below the allowed collimation aperture. In the first run of the LHC, this was the main limitation on β* , which was constrained to values above the design specification. In this article, we show through theoretical and experimental studies how tighter collimator openings and a new optics with specific phase-advance constraints allows a β* as small as 40 cm, a factor 2 smaller than β* =80 cm used in 2015 and significantly below the design value β* =55 cm, in spite of a lower beam energy. The proposed configuration with β* =40 cm has been successfully put into operation and has been used throughout 2016 as the LHC baseline. The decrease in β* compared to 2015 has been an essential contribution to reaching and surpassing, in 2016, the LHC design luminosity for the first time, and to accumulating a record-high integrated luminosity of around 40 fb −1 in one year, in spite of using less bunches than in the design.
机译:欧洲核子研究中心的大型强子对撞机(LHC)能够与空前的7 TeV能量碰撞强质子束。设计中每束362 MJ的能量存储使LHC束具有极高的破坏力,因此任何束损失都有造成超导磁体失超或损坏加速器组件的风险。准直仪是为了保护机器而安装的,它们定义了最小的标准化孔径,在该孔径以下,不允许使用其他元件。这对可达到的光度施加了限制,因为当将β*(碰撞点处的β函数)压缩为较小的值以提高光度时,最终聚焦系统中的β函数会增加。这导致较小的归一化孔径,而该孔径可能会低于允许的准直孔径。在大型强子对撞机的第一次运行中,这是对β*的主要限制,它被限制为高于设计规范的值。在本文中,我们通过理论和实验研究证明了更紧密的准直仪开口和具有特定相位超前约束的新型光学器件如何使β*小至40 cm,比2015年使用的β* = 80 cm小2倍,并且显着尽管光束能量较低,但仍低于设计值β* = 55 cm。 β* = 40 cm的拟议配置已成功投入运行,并已在2016年用作LHC基准。与2015年相比,β*的下降是对LHC设计光度在2016年首次达到和超过该水平的一项重要贡献,并且在一年中累积了约40 fb -1的创纪录高综合光度。尽管使用的束数少于设计中的束数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利